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Abstract. A generalised composition law is proposed which includes the *-composition 
law as a special case. The composition law preserves the order of the itineraries and their 
maximality. As an application the symbolic dynamics of the intermittency is briefly 
sketched. Other possible generalisations of the composition law are mentioned. 

1. Introduction 

For a unimodal map on the interval we may divide the interval into three coarse-grained 
parts: the centre or the critical point, the left side and the right side of the critical 
point. They may be denoted by the letters C, L and R, respectively. The sequence of 
iterates for a point x on the interval can then be associated with a sequence of the 
symbols L, C and R, the so-called itinerary Z(x) [l ,  21. The itinerary description 
reflects the essential feature of the evolution process, and plays a fundamental role in 
the construction of the MSS sequence [2]. 

An operation for itineraries is the *-product or *-composition law [3], which is of 
great importance in establishing the internal similarity and in showing the connection 
with renormalisation. It is our purpose here to generalise the composition law and 
enhance its power. In the next section we define the notation used in the paper. Section 
3 is the kernel of the paper, where we propose a generalised composition law which 
includes the *-composition law as a special case. Then we show application examples 
of the composition law in 0 4. Finally, in 0 5 we make a few concluding remarks and 
metnion other possible generalisations for the composition law. 

2. Preparation 

For the unimodal map in the interval we label the two monotonic branches of the 
mapping function with the letters R and L, respectively. Any numerical orbit 

~ 0 ,  XI =f(x , ) ,  . . ,  xn = f (xn - , ) ,  . . * 
may then be associated with a symbolic sequence of the letters, in which the ith symbol 
is determined by where x, is located. We may transfer the natural order of the initial 
points on the interval to that of their corresponding itineraries. The rule for defining 
the order of itineraries is then as follows. We assign an even parity to the monotonically 
increasing branch L, an odd parity to R, and at the same time zero parity to C for 
convenience. We have first the natural order 

L < C < R .  
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Given two itineraries Z I  = Z p  . . . and Z, = Zv. . . , where Z stands for the common 
leading string and p # U, the order of these two itineraries is then the order of p and 
v if the parity of Z is even; otherwise it is the reverse order of p and v, i.e. 

if p > v for even Z 

if p < v for odd Z 

Z I > Z ,  

XI > Z2 

It is obvious that the greater of the two strings Z p  and Zv is always odd. An itinerary 
is termed shift maximal, or simply maximal, when any of its shifts is never greater 
than itself. 

We now introduce the notation to be used later in this paper. For a given itinerary 
ZC, where Z consists of only R and L, we denote by (ZC), and (ZC)- the greater 
and smaller of the two strings ZR and ZL. The *-composition law with respect to the 
maximal itinerary ZC is then the substitution rule: 

R + W * ( R )  = Z *  R SS (ZC), 

c-,  W * ( C ) = Z * C = Z C  

L- ,  W * ( L ) = Z * L = ( Z C ) _ .  

Under this transformation rule a given maximal itinerary AC = 6061 . . . 6°C is mapped 
to its 'coarse-grained' image 

W * ( A C ) = Z * A C  = W*(6,) W * ( 6 , ) .  . . W*(6, )  W * ( C ) .  (2.2) 

The remarkable properties of the *-composition law have been discussed in [3]. 
Finally, we shall denote by 1x1 the length of the string Z, by (Z), with n < 1x1 the 

string consisting of the first n symbols of Z, and by ZJc the finite string Z with its last 
symbol replaced by the letter C. 

3. A generalised composition law 

The *-composition law preserves the parity of strings and the maximality of itineraries. 
This is the hint to generalise the construction. Instead of the substitution rule (2.1) 
we can consider a more general one 

R + W ( R )  = p = r l r 2 . .  . ru 

L-,  W (  L )  = A = 1,1, .  . ,1, (3.1) 

where the finite strings p and A consisting of only R and L satisfy the following 
conditions: 

(i) p is odd, and A is even 
(ii) p > A 
(iii) p lc  is maximal 
(iv) pAlc is maximal 
(v) ph" is maximal. 

According to the period window theorem [4] (that the maximality of XIc implies 
maximality of (ZR)" and (ZL)") and its modified reverse theorem, a superstable 
itinerary can be deduced from its adjacent non-superstable ones, so we need not 
consider the rule for the letter C in (3.1). I t  is easy to see that the *-composition law 
satisfies all the five conditions, and that from the conditions ( i )  and (ii) the composition 
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law preserves the order of itineraries. If we denote the transformation of the itinerary 

(3.2) 

Z = S ~ S , S ~  . . .  by 

Z +  W ( Z ) =  W(S0) W ( S , )  W(s2).  . . 
then C < A implies W(I;) < W(A). 

We now come to our main proposition. The transformation preserves the maximality 
of itineraries, i.e. the transformed itinerary of a maximal itinerary other than L" is 
still maximal. The itinerary L" should be excluded since A" need not be maximal. 
The maximality of p" is obvious from condition (iii) and the period window theorem, 
so for I; we shall consider only itineraries starting with RL. 

Before proving the proposition let us deduce from the conditions that pA"1, is 
maximal for any integer m. We first show the maximality of pA21,. From the maximality 
of ph I C  it is obvious that, for k 2 IpA I = U + U 

pA2IC > y k ( p A 2 I c ) .  (3 .3 )  

If k < l p A l  then from the maximality of phi, the relation (3 .3)  is true for ( p A ) , + , - k #  
Y k ( p A )  where (pA),+L,-k indicates the meaning of the first U + U - k symbols of pA.  
When = Y k ( p A )  = a the string a must be odd from the maximality of PA( , .  
Next we compare Y ' " - k ( p A " )  and A", the strings after the common leading string 
a. From the maximality of pA" the relation (3.3) is valid whenever p = 
( Y " t " - k ( p A " ) ) ,  f A. However, when p = A, the string ap = ah must be odd because 
a is odd and A is even, hence we have the validity of (3 .3) .  Thus, pA21, is maximal. 
Regarding ph as a new p, we can similarly prove the maximality of p A 3 ( , ,  and hence 
by induction that of any pA"lc. 

It is necessary to make a few ramarks about the conditions. 
(i)  The maximality of plc and pAl, does not imply the maximality of pA21,; for 

example p = RL and A = LRLRLL. 
( i i )  The maximality of phi, does not imply the maximality of p i c ;  for example 

p = RLRRRLR and A = LRR. 
(iii) The maximality of plC and ph" does not imply the maximality of P A [ , ;  for 

example p = RLRR and A = LRLR. 
We now prove the proposition. We see first that from the maximality of Z and 

conditions (i) and (ii) for ko=I;yLi I W(s, ) l ,  we have directly 

W(I;)> Yk0(W(Z)) .  (3.4) 

We only need to consider k = k , + j  where O < j <  I W(s, ) l .  We consider different 
situations separately as follows. 

Case I. Y"(I;) = S,,S,+~ . . . = R L R . .  . 
From the period window theorem [4] the maximality of phi, implies the maximality 

of (PA)". Thus, when ph # ap where a = Y k ( p A )  and p = ( P ) ~  we have always 

W(Z) > Y k (  W(Z)). (3.5) 
It is impossible that pA = ap, otherwise from the maximality of ph I C  we would deduce 
that both a and p are odd, which contradicts the fact that ap = pA is odd. 

Case II. s,,s,+, . . . = R L " R . .  . 
From the maximality of I; the string Z has to start with RL", i.e. Z = RL". . . . The 

proof is then similar to that for case I with A "  substituted for A. 
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Case I l l .  s,s,+, . . .= L R . .  . 
From the maximality of (PA)" when a = ( p h ) , - k  Z Yk(A)  = a' relation (3.5) is valid. 

If a = a' the maximality of pAl, then implies that a is odd. The maximality of ph21, 
then implies p A 2 .  . .? a h .  . . > a p .  . . because a is odd and p > A. Thus, (3.5) is always 
true. 

Case IV. S,S,+~ . . . = L " R . .  . 
The proof for this case is similar to that for case I11 with A "  substituted for A. 

Case V. S,S,+~ . . . = R " .  . . 
From the maximality of pa expression (3.5) is true for p # ap where a = Y k ( p )  

and p = ( p ) u - k .  If p = ap, from the maximality of plc we would have an odd a and 
at the same time an odd p. Thus, p = ap would become even, which contradicts the 
condition that p is odd, so relation (3.5) is verified. 

We have considered all the possible cases, so the proof of the proposition is 
completed. 

4. Examples of applications 

We beiefly show a few application examples of the generalised composition law. We 
do not attempt a very general discussion, and in the following examples adopt the 
negative Schwarzian derivative assumption to reduce possible map 'pathologies'. 

4.1. A working dejnition for coarse-grained chaos 

The largest kneading sequence or the itinerary I ( j (  C)) is RL". The chaotic behaviour 
of the dynamics at the parameter corresponding to RL" is fairly clear. In this case 
the map is topologically conjugated to the shift map of the sequence space on the two 
symbols [ 5 ] ,  and almost any periodic or non-periodic itinerary corresponds to a point 
on the interval. If for a given map there exists a point on the interval whose itinerary 
can be written in the form PA" with the finite strings p and A satisfying the above five 
conditions required for the generalised composition law, then a correspondence can 
be built between any itinerary consisting of R and L (belonging to the map of RL") 
and its coarse-grained itinerary consisting of p and A (belonging to the given map). 
The symbols R and L in the former itinerary are replaced by the finite strings p and 
A, respectively. In this way the latter is generated from the former. Taking RL" to be 
a prototype of chaos, we can call pA" a coarse-grained chaos. 

For the unimodal map with negative Schwarzian derivatives the periodic attractor, 
if it exists, must attract the critical point [l] .  When the kneading sequence is of the 
form pA" which cannot be reduced to a periodic sequence, i.e. here A" is an unstable 
periodic point, then there exists no stable periodic orbit. The critical point C can be 
attracted by no trivial attractor, and after a finite number of iterates it collides with 
the unstable periodic point A". The critical point is said to be homoclinic to the 
unstable periodic point, and the so-called crisis then occurs. We can have a working 
definition for coarse-grained chaos by examining the kneading sequence. That is, the 
kneading sequence of the coarse-grained chaos is of the form pAr or pQ, where Q is 
an unstable quasiperiodic point which may be viewed as the limit of a series of unstable 
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periodic points. The stange attractor now appears. It consists of the above-mentioned 
coarse-grained orbits, and is physically visible, i.e. is of a finite measure. 

The Feigenbaum itinerary R*" is a quasiperiodic chain of the 'atoms' R and L 
obtained by continuing the transformation 

Y : R + R L  L + R R  (4 .1)  
for an infinite time, i.e. 

R*" = lim Y"( R ) .  
n-oc  

At the same time we also have 
R*" = lim Y"( RL"). 

f l -" 

(4 .2 )  

(4 .3)  

When we say that the Feigenbaum kneading sequence is the onset of chaos, it is in a 
sense of the coarse-grained chaos. That is, a PA"-type kneading sequence first appears 
immediately above the Feigenbaum kneading sequence. 

4.2. The strange repeller at period three 

The kneading sequence of period three first appears to be (RLR)".  We can write 
(RLR)" = R (  LRR)" = pA" with p = R and A = LRR. It is easy to check that p and A 
satisfy the five conditions for the generalised composition law. Thus, any itinerary of 
the symbols R and L at the map of RL" has an image itinerary of the symbols p and 
A. In this way we obtain a coarse-grained chaotic set which, however, forming a strange 
repeller, is now of zero measure [ l ,  51. 

There is another way to write (RLR)" in the form PA", i.e. (RLR)" = RL( RRL)", 
which corresponds to the choice of p = RL and A = RRL. In this case the conditions 
for the generalised composition law are also satisfied. 

4.3. Period three implies chaos revisited 

It is well known that if there exists a period three orbit, stable or unstable, then there 
exists a periodic orbit for any period n. In terms of the symbolic dynamics we can 
explicitly 'name' these orbits. When a period three point exists, there is certainly a 
point on the interval whose itinerary is (RLR)".  We have written (RLR)"=  
R(LRR)"=  RL(RRL)". According to the generalised composition law we can con- 
struct coarse-grained itineraries from itineraries at the kneading sequence RL". Thus, 
we have for n = 0 , 1 , 2 , .  . . 

(RL")" + [ R (  LRR)"]" 

(RL")"+ [RL(LRR)"]"  

with period 3n + 1 

with period 3n + 2 
(4 .4)  

and 

(RL"*'RR)=+ [ R(  LRR)""RR]Z with period 3 ( n  + 1). (4.5) 

We have obtained periodic orbits for all possible lengths (although odd periodic 
itineraries also correspond to period-double orbits). 

4.4. Calculation of toplogical entropy for period three 

By relating a symmetric tent map to a sawtooth map and further to a shift map Milnor 
and Thurston have proposed an algorithm to obtain the topological entropy from the 
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kneading determinant [6]. Here we show a direct way of calculating the entropy from 
the fundamental strings for the kneading sequences. As we know, the knowledge of 
the number N,  of periodic orbits of order n allows an estimate of the topological 
entropy K [7], i.e. 

(4.6) 

From the two ways of writing (RLR)"  in the form ph", i.e. (RLR)"  = R(LRR)"  = 
RL(RRL)" ,  one can see for the map of (RLR)"  that all itineraries may be written in 
terms of only two fundamental strings R and RL. The number of periodic orbits of 
order n is then the same as the number of ways for a boy to climb up n steps if every 
time he may jump up either one or two steps. It is easy to write out the recursion 
relation for N ,  : 

N,,, N ,  + N,-,. (4.7) 

N,  - w n  (4.8) 

This is the same as the recursion relation for the Fibonacci sequence. We have 

where w = i ( d +  1) is the golden mean. Thus, K = In w = 0.481 21 1. . . . 
Similarly, for the kneading sequence (RL"R)" the fundamental strings are 

R, RL, RL', . , . , RL"'. 

The recursion relation is then 

N,, + = N,, -,,, + N,  +,,, - I + . . . + N,, 

from which the topological entropy can be obtained. 
(4.9) 

4.5. The symbolic dynamics of intermittency 

Let us examine the intermittency before period three. There is an increasing series of 
periodic kneading sequences [R(LRR)"]" ,  m = 1,2,. . . , which approaches (RLR)" 
for m +a. There is another series of kneading sequences R[(LRR)"RR]"  which are 
of the ph" type and increasing in m, and which also approaches (RLR)" for m + CO. 

For those non-periodic ph "-type kneading sequences the coarse-grained chaos can be 
seen to be of non-zero measure. This is the intermittency. Up to now the intermittency 
has been viewed as a transient phenomenon. The symbolic dynamics provides a new 
point of view and a more precise description. There is a sandwich structure of periodic 
windows and coarse-grained chaos. The power m is a natural measure of the laminar 
length, which is not a clearly defined quantity in the previous theory for the intermit- 
tency. 

5. Conclusion 

In the above we have proposed a generalised composition law which preserves the 
order of itineraries and their maximality, and includes the *-composition law as a 
special case. By means of this composition law a working definition of coarse-grained 
chaos is introduced, and the chaotic set of zero measure, the strange repeller at period 
three, is described. Furthermore, we have shown how to 'name' a periodic orbit of 
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any given order n in the presence of period three, and how to calculate the topological 
entropy directly from symbols. Among many other possible applications we have 
mentioned that the intermittency can be better described in this new language. 

There are other possibilities of generalisation for the composition law. These new 
composition laws might be useful in analysing the nesting structure of the bifurcation 
diagram. For example, instead of the sequence 

R" < (RL)" < ( RL2)X < . . . < RL" 

between the itineraries RL( RR)" = RLR(  RR)" and (RLR)"  there is a 'reverse' 
sequence 

,is > (PA )" < (PA z)m > . . . > PA 

where p = RLR > A = RR,  and both p and A are even. Such reverse sequences can be 
found in many places of the bifurcation diagram. We have also constructed the 
Fibonacci sequence of itineraries. Let us state the 'rule of the game': @(') = L, @ ( I )  = R. 
If p = max(@'("), @'" - I )  ) and A = min(@(m), @ ( " - I ) ) ,  then @ ( " ' + I )  = ph. We claim that 
@(" ' ) Ic ,  m = 0, 1,2 ,  . . . , is maximal. The applications of these generalised composition 
laws to the bahaviour of dyanmical systems is under study. 
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